High-stability semiquinone intermediate in nitrate reductase A (NarGHI) from Escherichia coli is located in a quinol oxidation site close to heme bD

Lanciano P, Magalon A, Bertrand P, Guigliarelli B, Grimaldi S

Quinol/nitrate oxidoreductase (NarGHI) is the first enzyme involved in respiratory denitrification in prokaryotes. Although this complex in E. coli is known to operate with both ubi and menaquinones, the location and the number of quinol binding sites remain elusive. NarGHI strongly stabilizes a semiquinone radical located within the dihemic anchor subunit NarI. To identify its location and function, we used a combination of mutagenesis, kinetics, EPR, and ENDOR spectroscopies. For the NarGHIH66Y and NarGHIH187Y mutants lacking the distal heme bD, no EPR signal of the semiquinone was observed. In contrast, a semiquinone was detected in the NarGHIH56Y mutant lacking the proximal heme bP. Its thermodynamic properties and spectroscopic characteristics, as revealed by Q-band EPR and ENDOR spectroscopies, are identical to those observed in the native enzyme. The substitution by Ala of the Lys86 residue close to heme bD, which was previously proposed to be in a quinol oxidation site of NarGHI (QD), also leads to the loss of the EPR signal of the semiquinone, although both hemes are present. Enzymatic assays carried out on the NarGHIK86A mutant reveal that the substitution dramatically reduces the rate of oxidation of both mena and ubiquinol analogues. These observations demonstrate that the semiquinone observed in NarI is strongly associated with heme bD and that Lys86 is required for its stabilization. Overall, our results indicate that the semiquinone is located within the quinol oxidation site QD. Details of the possible binding motif of the semiquinone and mechanistic implications are discussed.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s